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Abstract Calculations using the particle-map peRurbative approach predict that Auxons in 
long Josephson junctions can exhibit chaotic motion when the junction is driven by an extemal 
microwave signal, applied to the Junction via magnetic field boundary conditions. The chaotic 
state is reached through a Feigenbaum-iike cascade in the flunon times of flight acmss the 
junction, with increasing signal amplitudes. In the present work the existence of such chaotic 
dynamics is demonstrated via numerical integration of lhe full permrbed SineGordon partial 
differential equation (FWE) model of the junction The salient characteristics of the PDE dynamics 
are compared with the results obtained fmm lhe pemubative map approach. The resulting PDE 
chaos appears In be strictly low-dimensional: fluxons retain their shape without loss of spatial 
coherence, but their temporal motion is chaotic. 

1. Introduction 

In this paper we will examine the occurrence of chaos in a long Josephson Junction (UJ) 
biased with both Dc and RF terms. The subject was investigated in a previous paper [I] 
mostly by means of a simplified approach, called 'map approach'; our present purpose is to 
address it by modelling the UJ with the complete partial differential equation (PDE) known 
as the perturbed sineGordon equation (PSGE) [2] goveming the phase difference +(x, t )  
between the two macroscopic wave functions of the superconducting films constituting the 
junction. We will address the problem to better ascertain the existence and features of 
this chaos mainly with simulations of the complete PDE equation. The question is relevant 
because relatively few PDE systems show direct evidence of low-dimensional chaos (see 
Abdullaev [3] for a review of the subject); among these we recall for the PSGE (in different 
dynamic regimes) the works of Soerensen et al [4] and of .Taki et nl [5]. The findings 
of Soemsen et nl on the intermittence between Fiske steps have been explained in [6] as 
due to the competition between two incommensurate frequencies. The work of Taki et al 
[5 ] ,  as the pioneering work of Bishop et al 171, is devoted to the study of the breather 
dynamics. Here we focus ow attention on the kink dynamics for two reasons: (i) they are 
of more experimental relevance, &d (ii) since the kink is a topological excitation it is easier 
to distinguish from other dynamic states. A secondary purpose is the comparison of the 
PDE results with~the perturbative studies we have already published [l] of the very same 
model to establish the limits of the simplified approach. The advantage of the perturbative 
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method is the reduction to a bidmensional map (see [8] for a complete discussion; an 
alternative more general version has been developed by Malomed [91). Consequently, its 
computational cost is very low compared with the analysis of the complete system with 
(in principle) an infinite number of degrees of freedom. The two previous purposes are 
not independent: to use the perturbative approach we hypothesize that the solution of the 
PSGE is close enough to the single soliton solution of the unperturbed equation, Le. it is low 
dimensional. In this sense the success of the perturbative analysis is an indirect proof that 
the dynamics involve mainly a single soliton-like solution. 

There is also a practical motivation for the study of this problem: long Josephson 
junctions have been proposed as local oscillators for millimetre and submillimetre 
detectors [IO]. In thii case the essence of the device is based on the idea of a synchronous 
motion (phase locking) of the fluxon with the extemal microwave and consequently to 
detect the output power arising from the reflection of the fluxon at one edge. If the fluxon 
dynamics is destroyed such emission is destroyed too, while the loss of the phase locking 
would produce an undesirable growth of the noise of the signal. 

The paper is organized as follows: in section 2 we give a description of the equation 
adopted as model of LII; in section 3 we report OUT fundamental results in terms of parameter 
space; in section 4 we analyse the strange attractors of the system and their dependence 
upon the parameters; in section 5 we study the problem of low dimensionality from the 
point of view of autocorrelation functions; some conclusions are collected in section 6. 

2. Model 

The long Josephson Junction [ll] is defined by the fact that one spatial dimension of 
superconductive films making the junction is much longer than the so-called Josephson 
penetration depth hr. The electrical model leads to a (1 + 1)-dimensional nonlinear wave- 
propagation equation, known as the PSGE. In the so-called 'inlie' configuration this equation 
reads 

(1) 4== - 4tt - sin @ = ff4t - , 9 4 ~  . 
We have in addition at the junction ends two time-dependant boundary conditions for a 
current biased junction (DC term) irradiated by a microwave field (AC term) [8] 

In these formulas all the distances are normalized to AI, and times to 0;' = AI/?, the 
inverse plasma frequency, where E is the speed of light in the junction. q(t)  = qosinot 
is the normalized extemal magnetic field at the edges of the junction, CY and ,9 are loss 
parameters, x is the normalized bias current supplied to the junction. The choice of the 
inline geometry was due to the fact that the motion of the fluxon inside the junction is 
purely ballistic since the currents are fed only through the edges. 

Several methods, both numerical and perturbative, have been devised to d i m l y  solve 
or to gain information about the solutions of (1). A general methd for perturbed solitonic 
equations is to use the so-called collective coordinates approach in which exact solutions 
of the unperturbed equation are written in terms of slowly time dependant parameters [ 121. 
Inserting these paramehic solutions into the perturbed equation gives a set of ordinary 
differential equations (ODES) for the evolution of the parameters (collective coordinates), in 
our case the velocity of the centre of mass of the single soliton solution. In the inline case 
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the ODE can be solved analytically yielding a two-dimensional map in terms of the fluxon 
energy and phase of the external AC signal at each reflection [13]. In this paper much more 
attention will be paid to the numerical solution of the complete PDE problem. A point that 
we need to clarify is how we identify the map variables in the PDE context, or how we 
have reduced the infinite degrees of freedom system to a single degree of freedom system. 
We are assuming that the motion is of a soliton-like nature, so we identify the position 
of the fluxon as the point where the time derivative of the phase, i.e. the instantaneous 
voltage, is significatively higher than the background giving well-defined instantaneous 
voltage peaks [ 11. There is still a difficulty because in the map approach the energy of the 
fluxon is commonly used as a dynamic variable which, involving the computation of the 
time derivative of the position, suffers from a severe numerical error in the PDE approach. 

We have therefore chosen the time-of-flight (TOP) of the fluxon between the (k - 1)th 
and kth reflections as a new dynamic variable G: through equation (8) of 1131 it can be 
related to the initial energy. The other variable is as usual the phase .9k = sin-’(q(t)/qO) 
of the external microwave at the reflection of the fluxon. 

The algorithms and the approximations used are briefly described in the appendix. 

3. Parameter space 

As usual, the 6rst problem was the choice of the parameters to be studied. In (1) six 
parameters appear, namely (I!, j3. ,y, qo, o, L. For the loss parameters the choice was 
mtricted between the interesting case where chaos occurs (low values of (I! and j3) and the 
computational necessity to increase them to avoid extremely long transients. Simulations 
with 0 4 j3 4 0.04 (realistic values for currently used junctions [14]) have demonstrated 
that, using the magnetic field qo as control parameter, the first bifurcation changes less 
than 10% in the above range. This is not surprising since the bias current is relatively low 
(x Y 0.5): the j3 term is expected to play an important role only when the bias current is 
close enough to the Josephson current (2 in normalized units) [151. The loss parameter a 
is then almost fixed for the reasons discussed above; nevertheless we have explored several 
values of a in the range 0.05 4 a 6 0.3, always finding a discrepancy with the map 
simulations (in the sense discussed for the j3 term) within an accuracy of 10%. In the end 
we have chosen to set j3 = 0 and (I! 0.1, in order to reduce the number of parameters. 
To avoid the choice of too complicated a parameter space we have also fixed the length of 
the junction at L = 1 0  much shorter junctions cannot be of course considered ‘long’ and 
much longer junctions are seldom used in practice because of fabrication difficulties. Once 
we have chosen the length the frequency is more or less fixed because the RF induced step 
has to be far enough both from the asymptotic frequency of the zero field step and from its 
bottom. Moreover, in the map approach there is only a weak variation of the stable region, 
as a function of the frequency o, in the above region (0.3 4 o 4 0.6). However, there 
is an indeterminacy in the choice of o since phase-locking can be obtained if the fluxon 
frequency is a subharmonic of the RF frequency; in general the phase-locking condition is, 
with obvious notation 

n 
m otluron = -%F. (3) 

In the map context the case n = 1 is the most studied, and it is the most interesting from an 
applicative point of view. Steps with m = 1 show instability toward bifurcation only when 
the amplitude of the applied signal is so large as to destroy the single fluxon dynamics in 
the PDE analysis [l], while in the case m = 5 the annihilation region extends almost to 
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Figure 1. The parameter space in the PDE simulations. The parameters of the simulations are 
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Figure 2. The parameter space in the map simulations. n e  parameters of the simulations are 
L = IO, U =0.1, ,6 = 0.0, w = 0.447411. 

rlo = 0. Thus the choice of m = 3 is then almost the only possible to observe chaos. We 
have fixed m~/3  as the frequency of the fluxon without RF term at a DC bias x N 0.485. 
The map and PDE frequencies are slightly different due to the difference of the shape of the 
zero field step in the two cases, we are therefore forced to use two different values of the 
frequency for the two different approaches to keep the same bias current at the centre of the 
step. We parenthetically note that this choice is different from that used in [l] (where we 
used the same frequency but a different bias current) and greatly improves the agreement 
between the map and the PDE results. In conclusion we think that the study of the dynamics 
with variations of the two parameters qo and x is the most interesting. 

In figure 1 an overview of the parameter space studied with the PDE approach is 
presented; for comparison in figure 2 the prediction of the map approach is shown. Six 
regions are observed in both approaches. (i) The unlocked zone, UL, where the system is 
not locked to the extemal source. i.e. equation (3) is not satisfied for simple values of m 
and n. (ii) The phase locked region, PL, here the phase locking is realized in the simplest 
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way, one back-and-forth transit of the fluxon each three cycles of the external drive. (iii) 
The Feigenbaum-like cascade of bifurcation, Bi: in this region two-times-of-flight appear 
for each three RF cycles, followed by a period doubling cascade up to the beginning of 
chaos. The map prediction for the first bifurcation (see equations (44a) and ( a b )  of [SI) 
is confirmed by these numerical simulations. (iv) The voltage locked chaotic region, Lc: 
the chaos that appears in this region has a special feature. In a local sense it is completely 
chaotic: the fluxon moves around in the T - 6  phase plane without any possible prediction, 
but in a global sense it is ordered because the average of the time-of-flight is still locked to 
the extemal drive. This was confirmed to four digits of accuracy. (v) The voltage unlocked 
chaotic region, uc: here any memory of the extemal drive is lost, and the average of the 
times of flight converges to a different value.; (vi) The annihilation region, An: in this region 
fluxon dynamics cannot develop [l]. 

It can be noticed that the functional behaviour between the map and the PDE approach 
seems to be the s q e .  An important point is that in both the cases the instabilities first 
occur at the middle of the step, wbere the free running frequency of the fluxon exactly 
satisfies the phase locking conditions, so that we cannot speak of a competition between 
two frequencies, as in the case of short junctions 1161. A similar interpretation has also 
been given in [6] for intermittence between Fiske steps. 

L 
0 
E- 

5 0 .  

45. 
40. 

35. 

30. 

2 5 .  

2 0 .  

15. 
0 .  08 0.12 0.~16 D.20 0.24 0 . 2 8  

T O  

Figure 3. Bifurcation tree for the PDE simulations. Parameten arr L = 10, U = 0.1. ,9 = 0.0, 
o = 0.4, ,y = 0.485. 

In figure 3 the detailed dynamics fixing ,y = 0.485 and varying q,, for the same 
parameters of figure 1 is shown. The technique used was to adiabatically increase the 
magnetic field until a desired value was reached. Adiabatically here means that the system 
h a  relaxed to a steady state as has been proved by halving the sweep velocity. The test 
that the system has achieved a steady state is trivial when the motion is periodic; however, 
caution should be used when we claim that the dynamics is chaotic. For the moment let us 
use an heuristic definition of chaos as ‘non-evidently convergent to a periodic solution’; a 
more accurate analysis will be camed out in a next section. To simplify the representation 
we plot only the TOP, Tx. i.e. one of the two degrees of freedom used in the map approach. 
An analogous figure could be obtained using the other degree of freedom, the phase OX. 

The bifurcation tree seems very similar to those obtained with the map approach [8]. 
Note that to the eye there is no difference in the transition from the voltage locked chaos to 
the unlocked region (which occurs at about qo = 0.190). The Feigenbaum ratio is 6.1 for the 
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fourth bifurcation, in good agreement with the value of 5.9 found for the case 

4. Strange attractors 

The dynamics of the fluxons has been observed also plotting both the variables 6k and Tk 
to find the strange attractors in the phase plane. Figure 4 shows how the strange attractors 
are modified by the bias current, as we will discuss below. We have evaluated the fractal 
dimensions of the strange attractors using the Gmsberger-Rocaccia algorithm /18]. For 
x = 0.485, q = 0.170 (the other parameters are the same as in figure l), i.e. in the LC region, 
we have found the dimension to be 1.1, close to the result obtained by a box counting in 
the map approach [I]. Increasing the magnetic field up to q = 0.200 (in the UC region) the 
dimension was in turn found to be 1.3. The estimate is rough because of the relatively small 
number of points employed (3 x Id). It is worthwhile to note that PDE attractors appear 
very similar to map attractors at least for low values of qo (typically in the LC region) [191. 
‘An independent estimate of fractal dimension of attractors will be given in the following 
section. 

Figure 5 shows the I-V curve computed for two different values of the magnetic field, 
in the Lc (curve a) and uc (curve b) regions, respectively. Clearly evident in the middle of 
the uc step i s  the loss of voltage locking. This phenomenon has a dynamical counterpart 
in the attractors of figure Nu)+); in figure 4(a) an attractor in the LC region is shown, in 
the remaining parts unlocked attractors are shown. 

In figure 4(a) we have a compact ‘tail‘ structure in the region of higher TOF with no 
TOF longer than 35. In figure 4(b) the current was decreased to x = 0.470; here we note, 
as a sign of entering in the uc region, a change in the attractor: the partial disruption of 
the previous tail structure in which new long TOF develop. These phenomena reach the 
maximum in figure 4(c) where x = 0.445 and the longest TOF are developed. It is difficult 
to decide if so long TOF can be ascribed to an effective change of tails structure or if those 
tails exist also in the LC region but, being seldom visited, have not yet appeared in the 
simulations (i.e. in the first 800 mF). However, the difference between the two figures is 
evident so we can speak of qualitative c h g e  between LC and uc attractors. 
A justification for this behaviour can be found noting that at about x = 0.470 TOF become 
sufficiently long to ‘catch’ the m = 5 subharmonic whose phaselocking KIF is 39.0. 
This seems to indicate that in the uc region the system shows competition between two 
different attractors. Further evidence of this is provided by the following observations. 

(a) The basins corresponding to the subharmonic m = 3 and m = 5 can overlap. The 
perturbative approach predicts the range of existence of phase lock m = 3 and m = 5 
subharmonics steps extend Erom x = 0.484-qo to x = OA84+qo and from ,y = 0.364- qo 
to x = 0.364 + qo respectively. Thus for the same current x = 0.470 we can have two 
different attractors. 

@) PDE simulations show the possibility, biasing the junction at a bias value x = .485, 
of reaching the m = 5 subharmonic from the m = 3 state by slightly increasing qo from 
0.190 to 0.19% the system falls on the m = 5 attractor developing a tWO-TOF state. We 
note also that the stability analysis [81 indicates that the m = 5 basin for such a value of 
the bias and of the magnetic field does not contain a chaotic attractor. 

(c) The average voltage is moved to a lower value with respect to the m = 3 attractor, 
i.e. closer to the m = 5 average voltage supporting the idea that the system visits both the 
attractors. In the map data uc region is in a different region above the centre of the step, 
and the average voltage is moved to a higher value (2. 10% more than the phase-locked 
value), closer to the m = 2 athactor. Overlap should then take place with the m = 2 
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amactor, for the very same m o n s  discussed in point (a). 
On the other hand an exploration of the phase space with different initial conditions has 

not revealed the contemporary presence of stable attractom. Thus for different values of x 
and qo the system can develop some 'intermittence' between M = 3 and M = 5 (and in 
principle with all higher subharmonic when the TOF are sufficiently sparse). This mechanism 
probably drives the system out of the m = 3 LC state because higher subharmonics 
correspond to different voltages. This mechanism can simply destroy the fluxon, as happens 
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for higher TJO in the h region, driving the system into attractors, very unstable, that lead 
to the annihilation of the fluxon. Obviously the limitation of subharmonics involved is 
essentially due to fact that: (1) only for the few first subharmonics can the basins effectively 
overlap in chaotic regimes, and (2) higher subharmonics are progressively more unstable; 
being mainly chaotic they develop a large reciprocal instability and a large instability toward 
the annihilation. 

5. Autocorrelation 

Since we have claimed to study in which measure the dynamics of the system is low 
dimensional we will now try to make quantitative our assertion. To demonstrate that during 
the dynamics the phase 4 ( x ,  t )  shows a markedly correlated behaviour in space we have 
computed the spatial mean autocorrelation 

F ( x )  = - dt (&(x + x', t)@r(x', t)) (4) Lr 
We expect that for a localized soliton-lie solution the autocorrelation should be 
significatively different from zero only over a length of A,, while for turbulent motion 
it should be more or less flat [20]. The time counterpart of these assertions is that the 
temporal mean autocorrelation 

PO) = + 1' &(4r(x$ + 0 4 t ( X ,  t')) (5) 

should show a highly correlated behaviour in correspondence of the average TOF during 
the periodic motion and a tendency toward a flat behaviour with the onset of chaos. 
This is what we effectively observe in figure 6. In figure 6(a) are reported three curves 
corresponding to the spatial mean autocorrelation in the PL, Bi and UC regions; the temporal 
mean autocorrelation for the same regions is respectively shown'in figure 6(b)-(d). It seems 
evident that the drastic change in the temporal evolutions does not affect significatively 
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the first quantity, which always shows a correlation over distance of hi, while the time 
autocorrelation reflects a sharp change between the periodic and the chaotic regimes. This 
is evidently related to the well known phenomenon of noise-rise in chaotic spectra to which 
we return in the next section. 

The problem as to whether the presence of the soliton-like dynamics has to be interpreted 
as chaotic or not has also been investigated by means of the Lyapunov exponents. In [I] 
we have evaluated the Lyapunov exponents for the map approach tinding typical positive 
exponents in the chaotic region. It is clear that also TOF of PDE can be thought as a time 
series coming from a ‘map’: this corresponds to a projection of the full co-dimensional 
dynamics on a two-dimensional phase space. Evaluation of Lyapunov exponents of the 
projected system is possible, but we can not expect substantial differences from the map 
approach because it is obvious that in this way we consider the PDE as a low-dimensional 
system U priori. A somewhat different analysis can be carried out that takes into account 
all degrees of freedom of the PDE system, interpreting the discrete version of (1) (see the 
appendix) as the evolution of an N-dimensional vector [21]. We have then evaluated the first 
NL Lyapunov exponents with the method of Benettin et a1 [221 following the evolution of an 
NLdimensional volume under phase flux generated by equation (1). The general behaviour 
of such exponents can be summarized in the following points: (i) they are independent of 
N within the chosen limit on their convergence (here N indicates the number of sections 
into which the UI is divided to integrate (])-see the appendix for typical values); (ii) they 
are independent of NL; (iii) all the exponents are. negative below qo = 0.168, i.e. before 
the chaos sets in; (iv) the maximum exponent is the only positive exponent in the chaotic 
regions. Both points (ii) and (iv) are strongly indicative of the low dimensionality of full PDE 
dynamics. Moreover, numerical values are. consistent with the previous estimate of fractal 
dimension, according to the Kaplan-Yorke conjecture [18]. We found for qo = 0.170 the 
following values of first two Lyapunov exponents: AI = 0.0150 and = -0.0478; and 
from this KaplawYorke fractal dimension is found to be 1.313. Next for qo = 0.200 the 
exponents are: hi = 0.0320 and A2 = -0.0469, which give 1.682 for the (Kaplan-Yorke) 
fractal dimension. As pointed out in section 4 the direct evaluation of the fractal dimension 
gives 1.1 and 1.3 for qo = 0.17 and qo = 0.20, respectively. This is consistent with the fact 
that the Kaplan-Yorke conjecture gives an upper bound to the measure of the a m t o r  [18]. 

A somewhat more practical point of view is that, for the practical purposes of fabricating 
a device, the only important feature is the linewidth of the emitted radiation. For such a 
scope the behaviour of the time derivative of the phase at the edges is of crucial importance 
from an experimental point of view because it is directly related to the signal emitted from 
the junction. In the PDE approach we can analyse the radiation emitted by the fluxon at each 
reflection $*(O, t )  (the voltage at one edge). It has not been possible to evaluate exactly the 
liiewidth of the radiation because it is much smaller than accuracy of the numerical scheme 
used here (the evaluation of such a narrow linewidth would require an ad hoc method such 
as that used by If et a1 1231) and because we are neglecting thermal noise, but just to 
compare what relatively happens to the spect”. This is indicated in figure 7(u) and 7(b), 
which show the Fourier transform of the edge voltage in the PL and uc regions, respectively. 
Both the noise rise and the depression of the power emitted at the fundamental frequency 
are evident, two phenomena highly undesirable for the fabrication of practical devices. 

6. Conclusion 

The nature of chaos in the PDE system seems to be really low dimensional, i.e. the whole 
system behaves in a way that can be well described by the two degrees of freedom of the 



4946 G Fiatreila and G Rotoii 

1.0 

3 
F: 
3 0.5 W 
ffi 
ffi 
8 

0.0 
SPACE 

7 
I. 

TIME 

Figure 6. Spatial and temporal autowmlatlon. equations (4H5): (U) spatial qo = 0.100.0.150 
and 0.190. respectively; (b) temporal for qo = 0.100; (c) mpod for qo = 0.150 and (d)  
temporal for qo = 0.190. 

soliton-like solutions. The main argument in favor of the lowdimensional behaviour of 
the full PDE system is the finite dimension of the attractors obtained either by means of a 
straightforward estimate of the dimension and by means of the Lyapunov exponents (via 
the Kaplan-Yorke conjecture). 

In particular the Lyapunov exponent estimate, being completely independent from any 
a priori projection of phase space, is a very powerful test of postulated low dimensionality. 

Quantitative differences, such as the values of the control parameter for the occurrence 
of chaos or bifurcation and the Feigenbaum ratio, do not lead to qualitative discrepancies 
except for the phenomenon of the unlocked voltage chaos, but also in this zone the solitonic 
nature of the solutions seems to be well preserved. 

These effects might be ascribed to the fact that the flwon in the map formalism has no 
spatial extension; in the full model by contrast it has finite size. Consequently the external 
drive acts as a point-like excitation in the map approach and over a finite time in the PDE 
approach. This might lead to a different model of the underlying dynamics. 
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Appendix. Algorithm for PDE solution 

To solve (1) we have assumed instead that the function @(x, t )  is a discrete spatial variable, 
@(iAx, t). For the discrete system the operator a2/ax2 is substituted by 

(AI) 
az ~ 1 
ax2 AXZ 
- ~ - [ @ i + i . j - Z @ i . j + @ i + i . j l  2 6 i 6 N - 1  ~ ~ 

and the time equation for each point becomes 
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At the extreme to take into account boundq  conditions one adds two virtual points ( i  = 0 
and i = N + 1) and replaces the operator a/ax 

Boundary conditions are written as 

In this way the PDE system is transformed into N coupled ordinary differential equations 
that can be solved numerically. To check that, for a sufficiently small step size, the results 
are independent of the discretization chosen for the spatial derivative we have also used a 
five-point discretization for the operator a2/ax2 

a2 1 
(A6) 

We have again used the three-point discretization for points i = 1 and i = N + 1. The two 
schemes converge, for sufficiently small step size, to the same results. The computational 

- ax2 --f =[ - @i+2 + 16@;+1- 306; C 16@ii-1 -@i-z1 2 4 i 4 N - 2. 
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efficiencies of the two schemes are not significatively different Time evolution was in tum 
computed numerically with two different tools: a second-order predictor-corrector, and a 
Bulirsh-Stoer algorithm; again we have not found any discrepancy between the solutions 
within the given accuracy on TOF). The typical CPU time was estimated to be 20 
hours for each loo0 TOF on a VAX WM), with N = 120. Runs have been made also- with 
N = 60 and N = 240 to test the independence of N .  Lyapunov exponents were evaluated 
with NL = 1,2,4,8,16. 
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